600 research outputs found

    The Formation of a Disk Galaxy within a Growing Dark Halo

    Full text link
    We present a dynamical model for the formation and evolution of a massive disk galaxy, within a growing dark halo whose mass evolves according to cosmological simulations of structure formation. The galactic evolution is simulated with a new 3D chemo-dynamical code, including dark matter, stars and a multi-phase ISM. The simulations start at redshift z=4.85 with a small dark halo in a LCDM universe and we follow the evolution until the present epoch. The energy release by massive stars and SNe prevents a rapid collapse of the baryonic matter and delays the maximum star formation until z=1. The galaxy forms radially from inside-out and vertically from halo to disk. The first galactic component that forms is the halo, followed by the bulge, the disk-halo transition region, and the disk. At z=1, a bar begins to form which later turns into a triaxial bulge. There is a pronounced deficiency of low-metallicity disk stars due to pre-enrichment of the disk ISM with metal-rich gas from the bulge and inner disk (G-dwarf problem). The mean rotation and the distribution of orbital eccentricities for all stars as a function of metallicity are not very different from those observed in the solar neighbourhood, showing that homogeneous collapse models are oversimplified. The approach presented here provides a detailed description of the formation and evolution of an isolated disk galaxy in a LCDM universe, yielding new information about the kinematical and chemical history of the stars and the ISM, but also about the evolution of the luminosity, the colours and the morphology of disk galaxies.Comment: 23 pages, LaTeX, 18 figures, A&A accepted, a high resolution version of the paper can be found at http://www.astro.unibas.ch/leute/ms.shtm

    The Structure of the Interstellar Medium of Star Forming Galaxies

    Get PDF
    We present numerical methods for including stellar feedback in galaxy-scale simulations. We include heating by SNe (I & II), gas recycling and shock-heating from O-star & AGB winds, HII photoionization, and radiation pressure from stellar photons. The energetics and time-dependence are taken directly from stellar evolution models. We implement these in simulations with pc-scale resolution, modeling galaxies from SMC-like dwarfs and MW analogues to massive z~2 starburst disks. Absent feedback, gas cools and collapses without limit. With feedback, the ISM reaches a multi-phase steady state in which GMCs continuously form, disperse, and re-form. Our primary results include: (1) Star forming galaxies generically self-regulate at Toomre Q~1. Most of the volume is in diffuse hot gas with most of the mass in dense GMC complexes. The phase structure and gas mass at high densities are much more sensitive probes of stellar feedback physics than integrated quantities (Toomre Q or gas velocity dispersion). (2) Different feedback mechanisms act on different scales: radiation & HII pressure are critical to prevent runaway collapse of dense gas in GMCs. SNe and stellar winds dominate the dynamics of volume-filling hot gas; however this primarily vents out of the disk. (3) The galaxy-averaged SFR is determined by feedback. For given feedback efficiency, restricting star formation to molecular gas or modifying the cooling function has little effect; but changing feedback mechanisms directly translates to shifts off the Kennicutt-Schmidt relation. (4) Self-gravity leads to marginally-bound GMCs with an ~M^-2 mass function with a cutoff at the Jeans mass; they live a few dynamical times before being disrupted by stellar feedback and turn ~1-10% of their mass into stars (increasing from dwarfs through starburst galaxies). Low-mass GMCs are preferentially unbound.Comment: 34 pages, 24 figures, accepted to MNRAS (matches accepted version). Movies of the simulations are available at https://www.cfa.harvard.edu/~phopkins/Site/Movies_sbw.htm

    The Atomic to Molecular Transition and its Relation to the Scaling Properties of Galaxy Disks in the Local Universe

    Full text link
    We extend existing semi-analytic models of galaxy formation to track atomic and molecular gas in disk galaxies. Simple recipes for processes such as cooling, star formation, supernova feedback, and chemical enrichment of the stars and gas are grafted on to dark matter halo merger trees derived from the Millennium Simulation. Each galactic disk is represented by a series of concentric rings. We assume that surface density profile of infalling gas in a dark matter halo is exponential, with scale radius r_d that is proportional to the virial radius of the halo times its spin parameter λ\lambda. As the dark matter haloes grow through mergers and accretion, disk galaxies assemble from the inside out. We include two simple prescriptions for molecular gas formation processes in our models: one is based on the analytic calculations by Krumholz, McKee & Tumlinson (2008), and the other is a prescription where the H_2 fraction is determined by the kinematic pressure of the ISM. Motivated by the observational results of Leroy et al. (2008), we adopt a star formation law in which ΣSFRΣH2\Sigma_{SFR}\propto\Sigma_{H_2} in the regime where the molecular gas dominates the total gas surface density, and ΣSFRΣgas2\Sigma_{SFR}\propto \Sigma_{gas}^2 where atomic hydrogen dominates. We then fit these models to the radial surface density profiles of stars, HI and H_2 drawn from recent high resolution surveys of stars and gas in nearby galaxies. We explore how the ratios of atomic gas, molecular gas and stellar mass vary as a function of global galaxy scale parameters, including stellar mass, stellar surface density, and gas surface density. We elucidate how the trends can be understood in terms of three variables that determine the partition of baryons in disks: the mass of the dark matter halo, the spin parameter of the halo, and the amount of gas recently accreted from the external environment.Comment: Made some minor changes according to the reviewer's suggestion. Accepted by MNRA

    On the onset of galactic winds in quiescent star forming galaxies

    Full text link
    We studied the effect of supernovae feedback on a disk galaxy, taking into account the impact of infalling gas on both the star formation history and the corresponding outflow structure, the apparition of a supernovae-driven wind being highly sensitive to the halo mass, the galaxy spin and the star formation efficiency. We model our galaxies as cooling and collapsing NFW spheres. The dark matter component is modelled as a static external potential, while the baryon component is described by the Euler equations using the AMR code RAMSES. Metal-dependent cooling and supernovae-heating are also implemented using state-of-the-art recipes coming from cosmological simulations. We allow for 3 parameters to vary: the halo circular velocity, the spin parameter and the star formation efficiency. We found that the ram pressure of infalling material is the key factor limiting the apparition of galactic winds. We obtain a very low feedback efficiency, with supernovae to wind energy conversion factor around one percent, so that only low cicrular velocity galaxies give rise to strong winds. For massive galaxies, we obtain a galatic fountain, for which we discuss the observational properties. We conclude that for quiescent isolated galaxies, galactic winds appear only in very low mass systems. Although that can quite efficiently enrich the IGM with metals, they don't carry away enough cold material to solve the overcooling problem.Comment: 19 pages, 13 figures, 1 table, submited to A&

    Returning home: heritage work among the Stl'atl'imx of the Lower Lillooet River Valley

    Get PDF
    This article focusses on heritage practices in the tensioned landscape of the Stl’atl’imx (pronounced Stat-lee-um) people of the Lower Lillooet River Valley, British Columbia, Canada. Displaced from their traditional territories and cultural traditions through the colonial encounter, they are enacting, challenging and remaking their heritage as part of their long term goal to reclaim their land and return ‘home’. I draw on three examples of their heritage work: graveyard cleaning, the shifting ‘official’/‘unofficial’ heritage of a wagon road, and marshalling of the mountain named Nsvq’ts (pronounced In-SHUCK-ch) in order to illustrate how the past is strategically mobilised in order to substantiate positions in the present. While this paper focusses on heritage in an Indigenous and postcolonial context, I contend that the dynamics of heritage practices outlined here are applicable to all heritage practices

    Simulating Supersonic Turbulence in Galaxy Outflows

    Full text link
    We present three-dimensional, adaptive mesh simulations of dwarf galaxy out- flows driven by supersonic turbulence. Here we develop a subgrid model to track not only the thermal and bulk velocities of the gas, but also its turbulent velocities and length scales. This allows us to deposit energy from supernovae directly into supersonic turbulence, which acts on scales much larger than a particle mean free path, but much smaller than resolved large-scale flows. Unlike previous approaches, we are able to simulate a starbursting galaxy modeled after NGC 1569, with realistic radiative cooling throughout the simulation. Pockets of hot, diffuse gas around individual OB associations sweep up thick shells of material that persist for long times due to the cooling instability. The overlapping of high-pressure, rarefied regions leads to a collective central outflow that escapes the galaxy by eating away at the exterior gas through turbulent mixing, rather than gathering it into a thin, unstable shell. Supersonic, turbulent gas naturally avoids dense regions where turbulence decays quickly and cooling times are short, and this further enhances density contrasts throughout the galaxy- leading to a complex, chaotic distribution of bubbles, loops and filaments as observed in NGC 1569 and other outflowing starbursts.Comment: 22 pages, 13 figures, MNRAS, in pres

    The Degeneracy of Galaxy Formation Models

    Full text link
    We develop a new formalism for modeling the formation and evolution of galaxies within a hierarchical universe. Similarly to standard semi-analytical models we trace galaxies inside dark-matter merger-trees. The formalism includes treatment of feedback, star-formation, cooling, smooth accretion, gas stripping in satellite galaxies, and merger-induced star bursts. However, unlike in other models, each process is assumed to have an efficiency which depends only on the host halo mass and redshift. This allows us to describe the various components of the model in a simple and transparent way. By allowing the efficiencies to have any value for a given halo mass and redshift, we can easily encompass a large range of scenarios. To demonstrate this point, we examine several different galaxy formation models, which are all consistent with the observational data. Each model is characterized by a different unique feature: cold accretion in low mass haloes, zero feedback, stars formed only in merger-induced bursts, and shutdown of star-formation after mergers. Using these models we are able to examine the degeneracy inherent in galaxy formation models, and look for observational data that will help to break this degeneracy. We show that the full distribution of star-formation rates in a given stellar mass bin is promising in constraining the models. We compare our approach in detail to the semi-analytical model of De Lucia & Blaizot. It is shown that our formalism is able to produce a very similar population of galaxies once the same median efficiencies per halo mass and redshift are being used. We provide a public version of the model galaxies on our web-page, along with a tool for running models with user-defined parameters. Our model is able to provide results for a 62.5 h^{-1} Mpc box within just a few seconds.Comment: Accepted for publication in MNRAS. Fig 6 & 7 corrected. For the project page which allows running your own model, see http://www.mpa-garching.mpg.de/galform/sesam

    Gas Physics, Disk Fragmentation, and Bulge Formation in Young Galaxies

    Full text link
    We investigate the evolution of star-forming gas-rich disks, using a 3D chemodynamical model including a dark halo, stars, and a two-phase interstellar medium with feedback processes from the stars. We show that galaxy evolution proceeds along very different routes depending on whether it is the gas disk or the stellar disk which first becomes unstable, as measured by the respective Q-parameters. This in turn depends on the uncertain efficiency of energy dissipation of the cold cloud component from which stars form. When the cold gas cools efficiently and drives the instability, the galactic disk fragments and forms a number of massive clumps of stars and gas. The clumps spiral to the center of the galaxy in a few dynamical times and merge there to form a central bulge component in a strong starburst. When the kinetic energy of the cold clouds is dissipated at a lower rate, stars form from the gas in a more quiescent mode, and an instability only sets in at later times, when the surface density of the stellar disk has grown sufficiently high. The system then forms a stellar bar, which channels gas into the center, evolves, and forms a bulge whose stars are the result of a more extended star formation history. We investigate the stability of the gas-stellar disks in both regimes, as well as the star formation rates and element enrichment. We study the morphology of the evolving disks, calculating spatially resolved colours from the distribution of stars in age and metallicity, including dust absorption. We then discuss morphological observations such as clumpy structures and chain galaxies at high redshift as possible signatures of fragmenting, gas-rich disks. Finally, we investigate abundance ratio distributions as a means to distinguish the different scenarios for bulge formation.Comment: 16 pages, Latex, 14 figures, to appear in Astronomy and Astrophysics, Version with high quality images available at http://www.astro.unibas.ch/leute/ai.shtm

    Galaxies in a Simulated Λ\LambdaCDM Universe II: Observable Properties and Constraints on Feedback

    Get PDF
    We compare the properties of galaxies that form in a cosmological simulation without strong feedback to observations at z=0. We confirm previous findings that models without strong feedback overproduce the observed galaxy baryonic mass function, especially at the low and high mass extremes. Through post-processing we investigate what kinds of feedback would be required to reproduce observed galaxy masses and star formation rates. To mimic an extreme form of "preventive" feedback (e.g., AGN radio mode) we remove all baryonic mass that was originally accreted via "hot mode" from shock-heated gas. This does not bring the high mass end of the galaxy mass function into agreement with observations because much of the stellar mass in these systems formed at high redshift from baryons that originally accreted via "cold mode" onto lower mass progenitors. An efficient "ejective" feedback mechanism, such as supernova driven winds, must reduce the masses of these progenitors. Feedback must also reduce the masses of lower mass z=0 galaxies, which assemble at lower redshifts and have much lower star formation rates. If we monotonically re-map galaxy masses to reproduce the observed mass function, but retain the simulation's predicted star formation rates, we obtain fairly good agreement with the observed sequence of star-forming galaxies but fail to recover the observed population of passive, low star formation rate galaxies. Suppressing all hot mode accretion improves agreement for high mass galaxies but worsens the agreement at intermediate masses. Reproducing these z=0 observations requires a feedback mechanism that dramatically suppresses star formation in a fraction of galaxies, increasing with mass, while leaving star formation rates of other galaxies essentially unchanged.Comment: MNRAS in press. 15 pages, 5 figures, minimal changes from the first versio

    Feedback and Recycled Wind Accretion: Assembling the z=0 Galaxy Mass Function

    Get PDF
    We analyse cosmological hydrodynamic simulations that include observationally-constrained prescriptions for galactic outflows. If these simulated winds accurately represent winds in the real Universe, then material previously ejected in winds provides the dominant source of gas infall for new star formation at redshifts z<1. This recycled wind accretion, or wind mode, provides a third physically distinct accretion channel in addition to the "hot" and "cold" modes emphasised in recent theoretical studies. Because of the interaction between outflows and gas in and around halos, the recycling timescale of wind material (t_rec) is shorter in higher-mass systems, which reside in denser gaseous environments. In these simulations, this differential recycling plays a central role in shaping the present-day galaxy stellar mass function (GSMF). If we remove all particles that were ever ejected in a wind, then the predicted GSMFs are much steeper than observed; galaxy masses are suppressed both by the direct removal of gas and by the hydrodynamic heating of their surroundings, which reduces subsequent infall. With wind recycling included, the simulation that incorporates our favoured momentum-driven wind scalings reproduces the observed GSMF for stellar masses 10^9 < M < 5x10^10 Msolar. At higher masses, wind recycling leads to excessive galaxy masses and excessive star formation rates relative to observations. In these massive systems, some quenching mechanism must suppress the re-accretion of gas ejected from star-forming galaxies. In short, as has long been anticipated, the form of the GSMF is governed by outflows; the unexpected twist here for our simulated winds is that it is not primarily the ejection of material but how the ejected material is re-accreted that governs the GSMF.Comment: 16 pages, 7 figures, accepted by MNRA
    corecore